Definition of Pedagogy
In the most general sense, pedagogy is all the ways that instructors and students work with the course content. The fundamental learning goal for students is to be able to do “something meaningful” with the course content. Meaningful learning typically results in students working in the middle to upper levels of Bloom’s Taxonomy. We sometimes find that novice instructors conflate course content with pedagogy. This often results in “teaching as talking” where the presentation of content by the instructor is confused with the learning of content by the students. Think of your course content as clay and pedagogy as the ways you ask students to make “something meaningful” from that clay. Pedagogy is the combination of teaching methods (what instructors do), learning activities (what instructors ask their students to do), and learning assessments (the assignments, projects, or tasks that measure student learning).
Key Idea for Pedagogy
Diversify your pedagogy by varying your teaching methods, learning activities, and assignments. Critically assess your pedagogy through the lens of BIPOC students’ experiences at a PWI. We visualize these two related practices as a cycle because they are iterative and ongoing. Diversifying your pedagogy likely means shedding some typical ways of teaching in your discipline, or the teaching practices you inherited. It likely means doing more active learning and less traditional lecturing. Transforming good pedagogy into equitable pedagogy means rethinking your pedagogy in light of the PWI context and considering the ways your pedagogy may help or hinder learning for BIPOC students.
PWI Assumptions for Pedagogy
Understanding where students are on the spectrum of novice to expert learning in your discipline or course is a key challenge to implementing effective and inclusive pedagogy (National Research Council 2000). Instructors are typically so far removed from being a novice learner in their disciplines that they struggle to understand where students are on that spectrum. A key PWI assumption is that students understand how your disciplinary knowledge is organized and constructed. Students typically do not understand your discipline or the many other disciplines they are working in during their undergraduate years. Even graduate students may find it puzzling to explain the origins, methodologies, theories, logics, and assumptions of their disciplines. A second PWI assumption is that students are (or should be) academically prepared to learn your discipline. Students may be academically prepared for learning in some disciplines, but unless their high school experience was college preparatory and well supported, students (especially first-generation college students) are likely finding their way through a mysterious journey of different disciplinary conventions and modes of working and thinking (Nelson 1996).
A third PWI assumption is that instructors may confuse students’ academic underpreparation with their intelligence or capacity to learn. Academic preparation is typically a function of one’s high school experience including whether that high school was well resourced or under funded. Whether or not a student receives a quality high school education is usually a structural matter reflecting inequities in our K12 educational systems, not a reflection of an individual student’s ability to learn. A final PWI assumption is that students will learn well in the ways that the instructor learned well. Actually most instructors in higher education self-selected into disciplines that align with their interests, skills, academic preparation, and possibly family and community support. Our students have broader and different goals for seeking a college education and bring a range of skills to their coursework, which may or may not align with instructors’ expectations of how students learn. Inclusive teaching at a PWI means supporting the learning and career goals of our students.
Pedagogical Content Knowledge as a Core Concept
Kind and Chan (2019) propose that Pedagogical Content Knowledge (PCK) is the synthesis of Content Knowledge (expertise about a subject area) and Pedagogical Knowledge (expertise about teaching methods, assessment, classroom management, and how students learn). Content Knowledge (CK) without Pedagogical Knowledge (PK) limits instructors’ ability to teach effectively or inclusively. Novice instructors that rely on traditional lectures likely have limited Pedagogical Knowledge and may also be replicating their own inherited teaching practices. While Kind and Chan (2019) are writing from the perspective of science education, their concepts apply across disciplines. Moreover, Kind and Chan (2019) support van Driel et al.’s assertion that:
high-quality PCK is not characterized by knowing as many strategies as possible to teach a certain topic plus all the misconceptions students may have about it but by knowing when to apply a certain strategy in recognition of students’ actual learning needs and understanding why a certain teaching approach may be useful in one situation (quoted in Kind and Chan 2019, 975).
As we’ve stressed throughout this guide, the teaching context matters, and for inclusive pedagogy, special attention should be paid to the learning goals, instructor preparation, and students’ point of entry into course content. We also argue that the PWI context shapes what instructors might practice as CK, PK, and PCK. We recommend instructors become familiar with evidence-based pedagogy (or the Scholarship of Teaching and Learning, SoTL) in their fields. Moreover, we advise instructors to find and follow those instructors and scholars that specifically focus on inclusive teaching in their fields in order to develop an inclusive, flexible, and discipline-specific Pedagogical Content Knowledge.
Suggested Practices for Diversifying + Assessing Pedagogy
Although diversifying and critically assessing teaching methods, learning activities, and assignments will vary across disciplines, we offer a few key starting points. Diversifying your pedagogy is easier than critically assessing it through a PWI lens, but both steps are essential. In general, you can diversify your pedagogy by learning about active learning, peer learning, team-based learning, experiential learning, problem-based learning, and case-based learning, among others. There is extensive evidence-based pedagogical literature and practical guides readily available for these methods. And you can also find and follow scholars in your discipline that use these and other teaching methods.
Diversifying Your Pedagogy
Convert traditional lectures into interactive (or active) lectures
For in-person or synchronous online courses, break a traditional lecture into “mini-lectures” of 10-15 minutes in length. After each mini-lecture, ask your students to process their learning using a discussion or problem prompt, a Classroom Assessment Technique (CAT), a Think-Pair-Share, or another brief learning activity. Read Lecturing from Center for Teaching, Vanderbilt University.
Structure small group discussions
Provide both a process and concrete questions or tasks to guide student learning (for example, provide a scenario with 3 focused tasks such as identify the problem, brainstorm possible solutions, and list the pros/cons for each solution). Read How to Hold a Better Class Discussion, The Chronicle of Higher Education.
Integrate active learning
Integrate active learning, especially into courses that are conceptual, theoretical, or otherwise historically challenging (for example, calculus, organic chemistry, statistics, philosophy). For gateway courses, draw upon the research of STEM and other education specialists on how active learning and peer learning improves student learning and reduces disparities. Read the Association of American Universities STEM Network Scholarship.
Include authentic learning
Include authentic learning, learning activities and assignments that mirror how students will work after graduation. What does it mean to think and work like an engineer? How do project teams work together? How does one present research in an educational social media campaign? Since most students seeking a college education will not become academic researchers or faculty, what kinds of things will they do in the “real world?” Help students practice and hone those skills as they learn the course content. Read Edutopia’s PBL: What Does It Take for a Project to Be Authentic?
Vary assignments and provide options
Graded assignments should range from low to high stakes. Low stakes assignments allow students to learn from their mistakes and receive timely feedback on their learning. Options for assignments allow students to demonstrate their learning, rather than demonstrate their skill at a particular type of assessment (such as a multiple choice exam or an academic research paper). Read our guide, Create Assessments That Promote Learning for All Students.
Critically Assess Your Pedagogy
Critically assessing your pedagogy through the PWI lens with attention to how your pedagogy may affect the learning of BIPOC students is more challenging and highly contextual. Instructors will want to review and apply the concepts and principles discussed in the earlier sections of this guide on Predominantly White Institutions (PWIs), PWI Assumptions, and Class Climate.
Reflect on patterns
Reflect on patterns of participation, progress in learning (grade distributions), and other course-related evidence. Look at your class sessions and assignments as experimental data. Who participated? What kinds of participation did you observe? Who didn’t participate? Why might that be? Are there a variety of ways for students to participate in the learning activities (individually, in groups, via discussion, via writing, synchronously/in-person, asynchronously/online)?
Respond to feedback on climate
Respond to feedback on climate from on-going check-ins and Critical Incident Questionnaires (CIQs) as discussed in the Climate Section (Ongoing Practices). Students will likely disengage from your requests for feedback if you do not respond to their feedback. Use this feedback to re-calibrate and re-think your pedagogy.
Seek feedback on student learning
Seek feedback on student learning in the form of Classroom Assessment Techniques (CATs), in-class polls, asynchronous forums, exam wrappers, and other methods. Demonstrate that you care about your students’ learning by responding to this feedback as well. Here’s how students in previous semesters learned this material … I’m scheduling a problem-solving review session in the next class in response to the results of the exam …
Be diplomatic but clear when correcting mistakes and misconceptions
First-generation college students, many of whom may also identify as BIPOC, have typically achieved a great deal with few resources and significant barriers (Yosso 2005). However, they may be more likely to internalize their learning mistakes as signs that they don’t belong at the university. When correcting, be sure to normalize mistakes as part of the learning process. The correct answer is X, but I can see why you thought it was Y. Many students think it is Y because … But the correct answer is X because … Thank you for helping us understand that misconception.
Allow time for students to think and prepare for participation in a non-stressful setting
This was already suggested in the Climate Section (Race Stressors), but it is worth repeating. BIPOC students and multilingual students may need more time to prepare, not because of their intellectual abilities, but because of the effects of race stressors and other stressors increasing their cognitive load. Providing discussion or problem prompts in advance will reduce this stress and make space for learning. Additionally both student populations may experience stereotype threat, so participation in the “public” aspects of the class session may be stressful in ways that are not true for the majority white and domestic students. If you cannot provide prompts in advance, be sure to allow ample individual “think time” during a synchronous class session.
Avoid consensus models or majority rules processes
This was stated in the Climate Section (Teaching Practices to Avoid), but it’s such an entrenched PWI practice that it needs to be spotlighted and challenged. If I am a numerical “minority” and I am asked to come to consensus or agreement with a numerical “majority,” it is highly likely that my perspective will be minimized or dismissed. Or, I will have to expend a lot of energy to persuade my group of the value of my perspective, which is highly stressful. This is an unacceptable burden to put on BIPOC students and also may result in BIPOC students being placed in the position of teaching white students about a particular perspective or experience. The resulting tensions may also damage BIPOC students’ positive relationships with white students and instructors. When suitable for your content, create a learning experience that promotes seeking multiple solutions to problems, cases, or prompts. Rather than asking students to converge on one best recommendation, why not ask students to log all possible solutions (without evaluation) and then to recommend at least two solutions that include a rationale? Moreover, for course content dealing with policies, the recommended solutions could be explained in terms of their possible effects on different communities. If we value diverse perspectives, we need to structure the consideration of those perspectives into our learning activities and assignments.
We recognize the challenges of assessing your pedagogy through the PWI lens and doing your best to assess the effects on BIPOC student learning. This is a complex undertaking. But we encourage you to invite feedback from your students as well as to seek the guidance of colleagues, including advisors and other student affairs professionals, to inform your ongoing practices of teaching inclusively at a PWI. In the next section, we complete our exploration of the Inclusive Teaching at a PWI Framework by exploring the importance of auditing, diversifying, and critically assessing course content.
Pedagogy References
Kind, Vanessa and Kennedy K.H. Chan. 2019. “Resolving the Amalgam: Connecting Pedagogical Content Knowledge, Content Knowledge and Pedagogical Knowledge.” International Journal of Science Education. 41(7): 964-978.
Howard, Jay. N.D. “How to Hold a Better Class Discussion: Advice Guide.” The Chronicle of Higher Education.
https://www.chronicle.com/article/how-to-hold-a-better-class-discussion/#2
National Research Council. 2000. “How Experts Differ from Novices.” Chap 2 in How People Learn: Brain, Mind, Experience, and School: Expanded Edition. Washington D.C.: The National Academies Press.
https://nap.nationalacademies.org/catalog/9853/how-people-learn-brain-mind-experience-and-school-expanded-edition
Nelson, Craig E. 1996. “Student Diversity Requires Different Approaches to College Teaching, Even in Math and Science.” The American Behavioral Scientist. 40 (2): 165-175.
Sathy, Viji and Kelly A. Hogan. N.D. “How to Make Your Teaching More Inclusive: Advice Guide.” The Chronicle of Higher Education.
https://www.chronicle.com/article/how-to-make-your-teaching-more-inclusive/?cid=gen_sign_in
Yosso, Tara J. 2005. “Whose Culture Has Capital? A Critical Race Theory Discussion of Community Cultural Wealth.” Race, Ethnicity and Education. 8 (1): 69-91.